

Bedienungsanleitung Software SI-JET2-Scope V3.0 (PC-Software für Microsoft® Windows® Vista, XP, 2000, NT® 4.0, Me, 98, 95)

für den Sprühstrahlüberwachungs-Sensor SI-JET2

Die vorliegende Bedienungsanleitung dient zur Installation der PC-Software für den SI-JET2 Sprühstrahlsensor. Zur Unterstützung der Inbetriebnahme des Sprühstrahlsensors werden in dieser Bedienungsanleitung die einzelnen Funktionselemente der graphischen Windows®-Benutzeroberfläche erklärt.

Der SI-JET2 Sprühstrahlsensor detektiert die vom Messobjekt transmittierte Strahlung. Als Lichtquelle wird am SI-JET2 eine Rotlicht-LED mit einstellbarer Sendeleistung eingesetzt. Als Empfänger wird ein integrierter 3-fach-Empfänger für den LINKS-, MITTE- und RECHTS-Anteil des vom Messobjekt transmittierten Lichtes verwendet.

Über einen externen Eingang IN0 wird dem Sensor die aktuelle Dichte sowie Symmetrie eingelernt. Es können maximal 31 Zustände eingelernt werden.

Die Dichtedetektion sowie die Symmetrieerkennung erfolgen kontinuierlich. Der jeweils erkannte Zustand liegt entweder als Binärcode (OUTMODE=BINARY) oder direkt (OUTMODE=DIRECT) an den Ausgängen an. Gleichzeitig wird die erkannte Einstellung mit Hilfe von 5 LEDs am Gehäuse der Kontrollelektronik visualisiert.

Über die RS232-Schnittstelle können Parameter und Messwerte zwischen PC und dem SI-JET2 Sprühstrahlsensor ausgetauscht werden. Sämtliche Parameter zur Dichte- bzw. Symmetriedetektion können über die serielle Schnittstelle RS232 im nichtflüchtigen EEPROM des SI-JET2 Sprühstrahlsensors gespeichert werden. Nach erfolgter Parametrisierung arbeitet der Sensor im STAND-ALONE Betrieb mit den aktuellen Parametern ohne PC weiter.

0. Inhalt

		Seite
1.	Messgrößen	3
2.	Messprinzip	4
	2.1 Auswertemodi2.2 Teach Vorgang	
3.	Installation der SI-JET2-Scope Software	5
4.	Bedienung der SI-JET2-Scope Software	6
	 4.1 EVALUATION MODE ABSOLUT	
5.	Anschlussbelegung des SI-JET2 Systems	21
6.	RS232 Schnittstellenprotokoll	

1. Messgrößen

Nachfolgende Messgrößen werden im gesamten Manual zur Erläuterung des Messprinzips und zur Darstellung von Formeln herangezogen. Die Bezeichnungen stimmen auch mit denen auf der PC Benutzeroberfläche überein.

CH_L	Aktueller Wert von Kanal Links (channel left).
CH_C	Aktueller Wert von Kanal Mitte (channel centre).
CH_R	Aktueller Wert von Kanal Rechts (channel right).
MAX_CHL	Maximaler Wert von Kanal Links während der letzten 60 Sekunden
MAX_CHC	Maximaler Wert von Kanal Mitte während der letzten 60 Sekunden
MAX_CHR	Maximaler Wert von Kanal Rechts während der letzten 60 Sekunden
DENSITY	Aktuell errechnete Dichte
SYM1	Aktuell errechnete Symmetrie 1
SYM2	Aktuell errechnete Symmetrie 2
D	Lernwert für Dichte in Teach Table
DTO	Toleranzwert für Dichte in Teach Table
S1	Lernwert für Symmetrie 1 in Teach Table
S1TO	Toleranzwert für Symmetrie1 in Teach Table

- S2 Lernwert für Symmetrie 2 in Teach Table
- S2TO Toleranzwert für Symmetrie2 in Teach Table

Let's make sensors more individual

Instruments

Sensor M

2. Messprinzip

Mit dem SI-JET2 Sprühstrahlkontrollsystem werden folgende drei Messgrößen erfasst und im Produktionsprozess überwacht:

Senso

- Sprühstrahldichte (im Folgenden als Dichte oder Density bezeichnet).
- Symmetrie 1 (die beiden äußeren Kanäle werden ins Verhältnis gesetzt).
- Symmetrie 2 (Symmetrie 1 wird mit dem mittleren Kanal ins Verhältnis gesetzt).

Die Dichte und Symmetrie wird abhängig vom Auswertemodus wie folgt berechnet.

Auswertemodi

Auswertemodus (EVALUATION MODE) ABSOLUTE:

$$DENSITY = \frac{CH_L + CH_C + CH_R}{3} \qquad SYM1 = \frac{CH_L}{CH_L + CH_R} *1000$$

$$SYM 2 = \frac{CH_{-}C}{CH_{-}C + \frac{CH_{-}L + CH_{-}R}{2}} *1000$$

Auswertemodus (EVALUATION MODE) RELATIVE:

 $CHL_N = 4096 - \frac{CH_L}{MAX_CHL} * 4096 \qquad CHC_N = 4096 - \frac{CH_C}{MAX_CHC} * 4096 \qquad CHR_N = 4096 - \frac{CH_R}{MAX_CHR} * 4096 = \frac{CH_R}{MAX_CHR} + 4096 - \frac{CH_R}{MAX_CHR} = \frac{CH_R}{MAX_CHR} = \frac{CH_R}{MAX_CHR} + \frac{CH_R}{MAX_CHR} = \frac{CH_R}{MAX_CHR} + \frac{CH_R}{MAX_CHR} = \frac{CH_R}{MAX_CH$

 $DENSITY = CHC \ N$

$$SYM1 = \frac{CHL_N}{CHL_N + CHR_N} *1000$$

$$SYM 2 = \frac{CHC_N}{CHC_N + \frac{CHL_N + CHR_N}{2}} *1000$$

TEACH-Vorgang

Der Lernprozess erfolgt entweder über die Parametriersoftware oder über den Teach Eingang (IN0 PIN3 grün am Kabel cab-las8/SPS) bzw. über den am Gehäuse angebrachten Taster.

Beim Teachen über INO ist zu beachten, dass die Toleranzwerte für Dichte und Symmetrie einmalig im EEPROM der Kontrollelektronik mit Hilfe der Parametriersoftware abgespeichert werden.

Bevor der Eingang INO betätigt wird muss der zu erlernende Zustand dem Sensor-Frontend vorliegen.

D.h. zuerst muss das Sprühen angeschaltet und dann IN0 auf +24V gelegt werden.

Der aktuelle Zustand wird in so viele Zeilen der Teach Table eingelernt, wie unter MAXVEC-No. ausgewählt ist. Eine Klassifizierung erfolgt über unterschiedlich eingestellte Toleranzen.

Let's make sensors more individual

Instruments

3. Installation der SI-JET2-Scope V3.0 Software

Für eine erfolgreiche Installation der SI-JET2-Scope V3.0 Software müssen folgende Hardware-Voraussetzungen erfüllt sein:

- IBM PC AT oder kompatibler
- VGA-Grafik
- Microsoft® Windows® Vista, XP, Me, 2000, 98, NT® 4.0 oder 95
- serielle RS232-Schnittstelle am PC
- Microsoft kompatible Maus
- Kabel für die RS232-Schnittstelle
- ein CD-ROM-Laufwerk
- ca. 5 MByte freier Festplattenspeicher

Die SI-JET2-Scope Software kann nur unter Windows installiert werden. Deshalb müssen Sie zunächst Windows starten, falls es noch nicht aktiv ist.

Installieren Sie nun die Software wie im Folgenden beschrieben:

- Sie können die Software direkt von der Installations-CD-ROM installieren. Auf der CD-ROM befindet sich der Ordner INSTALL. Im Ordner INSTALL ist eine SETUP Anwendung. Zum Installieren der Software müssen Sie diese SETUP-Anwendung starten.
- Das Installationsprogramm meldet sich mit einem Dialogfeld und schlägt vor, die Software im Verzeichnis C:\"Dateiname" auf der Festplatte einzurichten. Akzeptieren Sie den Vorschlag mit OK oder [ENTER] oder ändern Sie die Pfad-Vorgaben nach Ihren Wünschen.
- 3. Während der Installation wird eine neue Programm-Gruppe für die Software im Windows Programm-Manager erzeugt. Außerdem wird in der erzeugten Programmgruppe ein Icon für den Start der Software automatisch generiert. Falls die Installation erfolgreich durchgeführt werden konnte, meldet sich das Installationsprogramm mit einer Dialogbox "Setup OK".
- 4. Nach erfolgreicher Installation kann die Software durch Doppelklick auf das Icon mit der linken Maustaste gestartet werden.

Windows® ist ein eingetragenes Warenzeichen der Microsoft Corp. VGA[™] ist ein Warenzeichen der International Business Machines Corp.

4. Bedienung der SI-JET2-Scope V3.0 Software

Bitte lesen Sie diesen Abschnitt zuerst durch, bevor Sie die Einjustierung und Parametrisierung des SI-JET2 Sprühstrahlsensors vornehmen.

Eine Kurz-Hilfe wird durch Drücken der rechten Maustaste auf ein einzelnes Element angezeigt.

Nach dem Aufruf der SI-JET2-Scope 3.0 Software erscheint folgendes Fenster auf der Windows Oberfläche:

* SI-JET2-Scope V3.0		
Ş	SI-JET2-Scope V3.0	
POWER (pm) 60 60 0 500 1000	SOURCE D / SYM1 / SYM2 OPEN RECORDER TEMP	0
AVERAGE 1024	SYM1 3280-	
MAXVEC-No.	SYM2 2870- 2460-	
OUTMODE DIRECT HI	2050-	
INTLIM 50	1640-	
HOLD [ms] 10 💌	820-	
EVALUATION MODE ABSOLUTE		
EXTEACH OFF	V-No:	
TRIGGER CONT	GO	
RAM SEND PARA		
	STOP CONNECT COM PORT 1 SIJET2 V3.0 RT:KW28/07	

Die Software meldet sich nach dem Programmstart mit der Standardkonfiguration COM1 und dem jeweiligen Status der Kommunikation.

г						_
l	CONNECT	COM PORT	1	SI-JET2 V3.0	RT:KW28/07	

CONNECT:

CONNECT Durch Drücken von CONNECT öffnet sich ein Fenster, in dem man die Schnittstelle wählen und konfigurieren kann. Neben CONNECT steht die momentan eingestellt Verbindungsart.

* COMMUNICATION SETTINGS					
COMMUNICATION PROTOCOL RS232 🔽					
SELECT COM PORT [1256]	1				
-					
TRY TO CONNECT					
ACCEPT SETTINGS DISCARD S	ETTINGS				

🗮 COMMUNICATION SETTINGS 🛛 🔲 🗖 🔀					
COMMUNICATION PROTOCOL TCP/IP					
INSERT IP ADRESS (xxx.xxx.xxx) OR HOST NAME					
192.168.2.150					
PORT NUMBER (Default 10001) 10001					
TRY TO CONNECT					
ACCEPT SETTINGS DISCARD SETTINGS					
INSERT A PANEL ID					

CONNECT:

In dem Funktionsfeld COMMUNICATION PROTOCOL kann entweder ein RS232 oder ein TCP/IP Protokoll ausgewählt werden.

Wählt man RS232, kann man mit SELECT COM PORT einen Port von 1 bis 256 auswählen, je nachdem an welchem der Sensor angeschlossen ist.

Zur Kommunikation des Sensors über ein lokales Netzwerk wird ein RS232 zu Ethernet Adapter benötigt. Dieser ermöglicht es eine Verbindung zum Sensor über das TCP/IP Protokoll herzustellen.

Die von uns erhältlichen Netzwerk Adapter basieren auf dem Lantronix XPort Modul. Um die Adapter zu parametrisieren (Vergabe von IP-Adresse, Einstellung der Baudrate von 19200) kann man die von Lantronix im Internet kostenlos bereitgestellte Software ("DeviceInstaller") unter http://www.lantronix.com/ downloaden. DeviceInstaller basiert auf dem " NET "

framework von Microsoft. Eine ausführliche Anleitung zur Bedienung der Software "DeviceInstaller" kann ebenso von Lantronix bezogen werden.

Um eine Verbindung zum Adapter herzustellen, muss dessen IP-Adresse oder HOST Name in das Eingabefeld INSERT IP ADRESS (xxx.xxx.xxx) OR HOST NAME eingetragen werden. Im DROP DOWN Menü (Pfeil nach unten) sind die letzten 10 verwendeten IP Adressen aufgelistet und können durch Anklicken direkt übernommen werden. Die DROP DOWN Liste bleibt auch nach Beenden der Software erhalten.

Die PORT NUMBER für die auf dem XPort basierenden Netzwerkadapter ist auf 10001 festgelegt und muss

belassen werden.

Nach Drücken von TRY TO CONNECT versucht die Software eine Verbindung mit den eingestellten Parametern aufzubauen. Der Status der Kommunikation wird im Anzeigedisplay angezeigt. Meldet sich der Sensor mit seiner FIRMWARE ID kann man mit ACCEPT SETTINGS die eingestellte Verbindungsart beibehalten und zum Hauptpanel zurückkehren. Erhält man ein CONNECTION FAILURE, konnte die Software keine Verbindung zum Sensor herstellen. In diesem Fall sollte zunächst geprüft werden, ob das Schnittstellenkabel richtig angebracht wurde, ob der Sensor an Spannung liegt und ob die eingestellten Parameter richtig gewählt wurden. Über DISCARD SETTINGS verlässt man das COMMUNICATION SETTINGS Panel mit den Parametern welche vor Aufruf des Panels eingestellt waren.

Wurde eine Verbindung mit ACCEPT SETTINGS bestätigt, dann startet die Software beim nächsten Aufruf automatisch mit dieser Einstellung.

Grundvoraussetzung für die Messwertübertragung vom PC zum Sensor ist die stabile Funktion der Schnittstelle.

Aufgrund der begrenzten Datenübertragungsrate über die serielle RS232-Schnittstelle (19200 Bit/s) können nur langsame Veränderungen der Rohsignale am Sensor-Frontend im graphischen Ausgabefenster des PC mitverfolgt werden. Zur Einhaltung der maximalen Schaltfrequenz am Sensor muss zudem der Datenaustausch mit dem PC beendet werden (STOP-Taste drücken).

Beachte:

Eine Änderung der Funktionsgruppen Parameter wird erst nach Betätigung der SEND-Taste im MEM-Funktionsfeld am Sensor wirksam !

Im Folgenden werden die Funktionen der einzelnen Bedienelemente der SI-JET2-Scope Software erklärt:

Beachte:

Eine Änderung der Parameter wird erst nach Betätigung der SEND-Taste im MEM-Funktionsfeld am SI-JET2 Sprühstrahlsensor wirksam!

EVALUATION MODE ABSOLUTE

Der SI-JET2 kann mit zwei unterschiedlichen Auswertemodi betrieben werden.

ABSOLUTE:

Zur Auswertung wird der aktuelle Zustand der drei Kanäle CH_L, CH_C und CH_R herangezogen.

RELATIVE:

Zur Auswertung wird der aktuelle Zustand der drei Kanäle CH_L, CH_C und CH_R relativ zu deren Maximalwerten innerhalb der letzten 60 Sekunden herangezogen. Siehe 4.1 und 4.2!

EXTEACH	OFF	T	
		_	

No. TEACH TABLE							
	D	DTO	S1	S1TO	S2	S2TO	
0	1	100	1	20	1	20	
1	1	200	1	40	1	40	
2	1	300	1	60	1	60	
3	1	400	1	80	1	80	
4	1	1	1	1	1	1	
5	1	1	1	1	1	1	

EXTERN TEACH:

Aktiviert man EXTERN TEACH, kann man über den externen IN0-Eingang bzw. über die TEACH Taste den aktuell anliegenden Sprühzustand in die TEACH TABLE übernehmen. Der aktuell anliegende Zeilenvektor wird dabei automatisch beginnend mit Zeile 0 in so viele Zeilen übernommen, wie in MAXVEC-No. eingestellt ist.

Vorteil dabei ist es, dass der Benutzer dazu nicht die Parametrisierungssoftware starten muss.

Zu beachten ist, dass bei Auswahl dieses Auswertemodus die Toleranzen einmalig zu Beginn ins EEPROM abgespeichert werden müssen.

Außerdem muss im Vorfeld die MAXVEC-No. vorgegeben werden und ebenfalls im EEPROM abgelegt werden.

BEACHTE!

Ist der EXTERN TEACH Modus aktiviert, dann ist eine externe Triggerung mit EXT1 und EXT2 nicht möglich, da der Sensor nur über einen Eingang verfügt.

Das Funktionsfeld TRIGGER ist nicht mehr aktiv.

TRIGGER:

In diesem Funktionsfeld wird die Triggerbetriebsart am SI-JET2 Sensor eingestellt.

CONT:

Kontinuierliche Auswertung (kein Trigger-Ereignis notwendig).

EXT1:

Die Auswertung wird über den externen Triggereingang (IN0 Pin3 grn am Kabel cab-las8/SPS) bzw. durch Drücken der TEACH Taste gestartet. Ein Triggerereignis wird erkannt, solange am Eingang IN0 +24V anliegt (HIGH aktiv).

Nachdem der Triggereingang wieder auf LOW geht, wird der zuletzt erkannte Zustand (V-No.:) an den Ausgängen gehalten.

EXT2:

Selbes Verhalten wie im Modus EXT1 mit dem Unterschied, dass, nachdem der Triggereingang wieder auf LOW geht, der Fehlerzustand (V-No.: = 255) ausgegeben wird.

BEACHTE!

Ist der TRIGGER Modus aktiviert, dann ist ein externes Teachen nicht möglich, da der Sensor nur über einen Eingang verfügt.

Das Funktionsfeld EXTEACH ist nicht mehr aktiv.

POWER:

In diesem Funktionsfeld kann mit Hilfe des Schiebereglers oder durch Eingabe in die Edit-Box die Intensität der Sendereinheit eingestellt werden.

Der Wert 1000 bedeutet volle Intensität an der Sendereinheit, beim Wert 0 wird die kleinste Intensität am Sender eingestellt.

AVERAGE	1024	•

AVERAGE:

In diesem Funktionsfeld wird die Anzahl der Abtastwerte (Messwerte) eingestellt, über die das am Empfänger gemessene Rohsignal gemittelt wird. Ein arößerer

AVERAGE-Vorgabewert reduziert das Rauschen der Rohsignale der Empfangseinheit, gleichzeitig verringert sich die maximal erreichbare Schaltfrequenz des SI-JET2 Sprühstrahlsensors.

MAXVEC-No.:

In diesem Funktionsfeld wird die Anzahl der Sprühzustände festgelegt, die kontrolliert werden sollen. Im Modus BINARY können maximal 31 Sprühzustände, im Modus DIRECT HI oder DIRECT LO maximal 5 Sprühzustände (0, 1, 2, 3, 4) kontrolliert werden.

Der hier eingestellte Zahlenwert bestimmt die aktuell mögliche Abtastrate des Sensors. Je weniger Sprühzustände kontrolliert werden müssen, desto schneller arbeitet der SI JET2 Sensor.

Der hier vorgegebene Zahlenwert bezieht sich auf die Anzahl der Zeilen (beginnend mit der Zeile 0) in der → TEACH TABLE.

OUTMODE:

Mit dieser Funktionstastengruppe kann die Ansteuerung der 5 Digitalausgänge ausgewählt werden.

BINARY:

Falls beim zeilenweisen Vergleich der aktuelle Sprühzustand mit dem in der TEACH TABLE eingetragenen Lernzustand übereinstimmt, wird dieser "Treffer" in der TEACH TABLE als Vektornummer (V-No.) angezeigt und an den Digitalausgängen (OUT0 ... OUT4) als Bitmuster angelegt. Es können maximal 31 Sprühzustände eingelernt werden.

DIRECT:

In diesem Modus sind maximal 5 Sprühzustände erlaubt.

Falls beim zeilenweisen Vergleich der aktuelle Sprühzustand mit den in der TEACH TABLE eingetragenen Lernzustand übereinstimmen, wird dieser "Treffer" in der TEACH TABLE als Vektornummer (V-No.) angezeigt und an den Digitalausgängen (OUT0 ... OUT4) direkt ausgegeben.

DIRECT HI:

Steht der Wahlschalter auf DIRECT HI und wird ein Zeilenvektor (V-No.: 0-4) in der TEACH TABLE erkannt, so liegt der entsprechende Digitalausgang (OUT0 ... OUT4) auf HI. Wenn kein Zeilenvektor erkannt wurde, befinden sich die Digitalausgänge im LO-Zustand (keine LED leuchtet).

DIRECT LO:

Steht der Wahlschalter auf DIRECT LO und wird ein Zeilenvektor (V-No.: 0-4) in der TEACH TABLE erkannt, so liegt der entsprechende Digitalausgang (OUT0 ... OUT4) auf LO und die anderen auf HI. Wenn kein Zeilenvektor erkannt wurde, befinden sich die Digitalausgänge im HI-Zustand (alle LEDs leuchten).

INTLIM	50
--------	----

INTLIM:

In dieser Edit-Box kann ein Intensitätslimit eingestellt werden. Falls die an der Empfangseinheit ankommende aktuelle Intensität INT=(CH_L+CH_C_+CH_R)/3 diese Grenze

unterschreitet, wird keine Auswertung mehr durchgeführt und der Fehlerzustand (V-No.: = 255) ausgegeben.

HOLD [ms]	10 💌	

HOLD:

Der SI-JET2 Sprühstrahlsensor arbeitet mit minimalen Scanzeiten in der Größenordnung von weniger als 150µs. Aus diesem Grunde haben die meisten an den digitalen

Ausgängen OUT0 ... OUT4 angeschlossenen SPS Schwierigkeiten, die sich daraus ergebenden kurzen Schaltzustandsänderungen sicher zu erkennen. Durch Anwahl des jeweiligen HOLD-Auswahlknopfes kann eine Pulsverlängerung an den Digitalausgängen des SI-JET2 Sensor-Systems bis zu 100 ms gewährleistet werden.

RAM, EEPROM, FILE :

Diese Funktionstastengruppe dient zum Parameteraustausch zwischen PC und dem SI-JET2 Sensor über die serielle RS232 Schnittstelle.

PARA:

Mit Hilfe dieses Umschalters kann die Anzeige der TEACH TABLE am PC-Bildschirm aus- bzw. eingeschaltet werden.

1: Anzeige von Funktionsfeldern zur Eingabe und Auswahl von allgemeinen Überwachungsparametern. 0: Anzeige der TEACH TABLE zur Eingabe der einzelnen Parameter für die Lernvektoren.

SEND:

Durch Anklicken der Taste SEND (bzw. per Shortcut Keytaste F9) werden alle aktuell eingestellten Parameter zwischen PC und dem Sensor übertragen. Das Ziel der jeweiligen Parameterübertragung wird durch den selektierten Auswahlknopf (RAM, EEPROM oder FILE) festgelegt.

GET:

Durch Anklicken der Taste GET (bzw. per Shortcut Keytaste F10) können die aktuellen Einstellwerte vom Sensor abgefragt werden. Die Quelle des Datenaustausches wird über den selektierten Auswahlknopf (RAM, EEPROM oder FILE) festgelegt.

- RAM: Die aktuellen Parameter werden in den RAM Speicher des Sensors geschrieben bzw. aus dessen RAM Speicher gelesen, d.h. nach Ausschalten der Spannung am Sensor gehen diese Parameter wieder verloren.
- EEPROM: Die aktuellen Parameter werden in den Speicher des nichtflüchtigen EEPROMS im Sensor geschrieben oder aus dessen EEPROM gelesen, d.h. nach Ausschalten der Spannung am Sensor bleiben die im internen EEPROM abgelegten Parameter erhalten.
- FILE: Nach Anklicken dieses Auswahlknopfes öffnet sich ein Info-Feld mit dem File-Namen der aktuellen Parameterdatei. Beachte:

Erst nach Anklicken der SEND (F9) bzw. GET Taste (F10) werden die aktuellen Parameter in die aktuelle Ausgabedatei gespeichert bzw. aus der aktuellen Ausgabedatei gelesen.

			? 🗙
Directory History:	D:\InitFiles		•
Suchen in:	initFiles	✓ ← Ē (<u>*</u>
🛅 init			
Dateiname:	linit		ОК
			Alberton

Falls auf eine andere Ausgabedatei zugegriffen werden soll, muss zunächst der FILE Druckknopf mit dem Mauszeiger angeklickt werden. Hierauf öffnet sich ein weiteres Dialogfenster zur Auswahl einer bestehenden Ausgabedatei bzw. zur Eingabe des Filenamens für eine neue Ausgabedatei.

Let's make sensors more individua Sensor

STOP

Inc:

GO:

Nach Anklicken dieser Taste wird der Datentransfer vom SI JET2 Sensor zum PC über die serielle RS232 Schnittstelle gestartet.

Die aktuell gemessenen Daten werden auf der PC-Oberfläche in den entsprechenden Anzeigeelementen angezeigt.

STOP:

Nach Anklicken dieser Taste wird der Datentransfer vom SI JET2 Sensor zum PC über die serielle RS232 Schnittstelle beendet.

TEACH DATA TO:

RESET TABLE:

Nach Anklicken dieser Taste wird ein automatischer Lernvorgang durchgeführt. Die aktuellen Messwerte werden als Lernwerte definiert. Die Lernwerte werden der unter dem Funktionsfeld No.: angewählten Zeile zugeordnet.

No.:

Unter No.: wählt man aus, in welche Zeile der aktuelle Lernvektor abgespeichert werden soll.

Wenn Inc aktiviert ist und die TEACH DATA TO Taste gedrückt wird, erfolgt eine automatische Inkrementierung (Erhöhung) des Eingabefeldes No.: um 1, d.h. die nächste Zeile in der TEACH TABLE wird ausgewählt.

RESET	TABLE	RESET TAB Durch Betätig (RESET-Wei	LE: gen dieser Taste wird die rt = 1).	ETEACH TABLE zurü	ckgesetzt	
DENSITY 0	Aktuell errechnete Dichte					
SYM1	Aktuell errechn	ete Symmetri	e 1			
SYM2	Aktuell errechn	ete Symmetri	e 2			
	Aktueller Wert	von Kanal Lin	ks (channel left)			
	Aktueller Wert	von Kanal Mit	te (channel centre)			
CH_R	Aktueller Wert	von Kanal Re	chts (channel right)			
MAX_CHL	Maximaler Wert von Kanal Links während der letzten 60 Sekunden					
	Maximaler Wer	rt von Kanal M	litte während der letzten	60 Sekunden		
	Maximaler Wer	t von Kanal R	echts während der letzte	n 60 Sekunden		
темр 📕	0 Aktuel	lle im Sensorg	gehäuse gemessene Ten	nperatur		
V-No: 255	V-No.: In diesem 2 Eintrag in entsprechen	Zahlenwert-Au der TEACH des Bitmuster	usgabefeld wird die akt TABLE angezeigt. I r an den Digitalausgänge	uell erkannte Vektor Die aktuell erkannte n OUT0 OUT4 ang	nummer entsprechend der e Vektornummer wird a relegt.	m Is
Beachte:	Obige Ausg PC und SI J	abefelder we ET2 Sensor a	erden nur bei aktiver Da aktualisiert.	tenübertragung (GC) Taste gedrückt) zwische	'n
SOURCE	D / SYM1 / SYM	12 SOL Nach Anze	JRCE: n Anklicken der Pfeil-Tas eige-Modus im graphisch	ste öffnet sich ein Au en Anzeigefenster.	swahlfeld zur Anwahl eine	s

D / SYM1 / SYM2	Aktuelle Dichte, Symmetrie 1 und Symmetrie 2 werden angezeigt.
RAW	Aktuelle Rohsignale werden angezeigt.

* SI-JET2-Scope V3.0 SI-JET2-Scope V3.0 D / SYM1 / SYM2 🔻 SOURCE OPEN RECORDER TEMP 42 60 POWER (pm) 4 0 500 1000 DENSITY 4096-3686 SYM1 AVERAGE 1024 -3277-SYM2 2867-MAXVEC-No. 4 2458-OUTMODE DIRECT HI T 2048-1638-INTLIM 50 1229-HOLD [ms] 10 T 819-410-ABSOLUTE EVALUATION MODE Ŧ 0-0 100 V-No: OFF -EXTEACH ό 100 200 300 400 500 600 700 800 900 1000 TRIGGER CONT • GO 500 200 300 400 100 600 700 800 900 1000 ń 🔳 RAM PARA SEND EEPROM STOP ó SI-JET2 V3.0 RT:KW28/07 CONNECT COM PORT 1 GET FILE

4.1 EVALUATION MODE ABSOLUTE

Im EVALUATION MODE ABSOLUTE werden alle drei Kanäle CH_L, CH_C und CH_R zur Bildung der Dichte, Symmetrie 1 und Symmetrie 2 herangezogen:

$$DENSITY = \frac{CH_L + CH_C + CH_R}{3} \qquad SYM1 = \frac{CH_L}{CH_L + CH_R} *1000$$

$$SYM2 = \frac{CH_{C}}{CH_{C} + \frac{CH_{L} + CH_{R}}{2}} *1000$$

Die aktuellen Werte für DENSITY, SYM1 und SYM2 werden auf der PC-Oberfläche in Displays angezeigt. CH_L, CH_C und CH_R werden zudem noch rechts neben dem Graphen als Balken angezeigt. Mit SOURCE kann man auswählen, welches Signal im Graphen visualisiert werden sollen.

Zum Teachen muss der Schalter PARA auf 0 geschaltet werden.

Nachdem PARA betätigt wurde, verschwinden die Einstellparameter und die TEACH TABLE erscheint. Dem Sensor können insgesamt 31 TEACH Vektoren gelernt werden.

Durch Betätigen der Taste GO werden die aktuellen im Sensor berechneten Daten für DENSITY, SYM1 und SYM2 auf der PC Oberfläche angezeigt.

Durch Betätigen der Taste TEACH DATA TO werden die Daten in die TEACH TABLE übernommen und zwar in die Zeile, welche unter No.: ausgewählt ist.

Mit DTO wird eine plus/minus Toleranz für die erlernte Dichte festgelegt. Der Wert kann vom Benutzer verändert werden. Dazu muss die entsprechende Zelle in der TEACH TABLE entweder durch einen Doppelklick oder mit der Funktionstaste F2 selektiert werden. Je größer DTO, desto unempfindlicher ist der Sensor.

Mit S1TO bzw. S2TO wird eine plus/minus Toleranz für Symmetrie1 bzw. Symmetrie2 festgelegt.

Nachdem ein Vektor gelernt wurde, teilt man die Information dem Sensor durch Drücken der Taste SEND mit.

Durch Betätigen der Taste SEND stoppt der Sensor das Daten Polling.

Um zu kontrollieren, ob der Sensor den Lernvektor übernommen hat, muss die Taste GO erneut betätigt werden.

Unter V-No: wird die aktuell erkannte Zeile angezeigt.

Ist unter SOURCE D / SYM1 / SYM2 selektiert, dann werden die aktuell ermittelten Werte für Dichte, Symmetrie1 und Symmetrie2 sowie die Toleranzfenster, welche unter No.: ausgewählt worden sind, angezeigt.

Beachte!

Der Wertebereich für die Dichte ist von 0 bis 4096.

Der Wertebereich für SYM1 und SYM2 ist von 0 bis 1000.

4.2 EVALUATION MODE RELATIVE

Im EVALUATION MODE RELATIVE werden alle drei Kanäle CH_L, CH_C und CH_R zu ihren jeweiligen Maximalwert während der letzten 60 Sekunden normiert. Zur Bildung der Dichte, Symmetrie 1 und Symmetrie 2 werden diese normierten Werte herangezogen. Vorteil dieser Auswertung ist, dass durch die Normierung auf den jeweiligen Maximalwert eine Verschmutzung des Sensors weitgehend kompensiert wird. Zu beachten ist, dass in diesem Auswertemodus der Sensor innerhalb 60 Sekunden mindestens für 2 Sekunden am Stück frei sein muss, damit die entsprechenden Maximalwerte gebildet werden können. Im Weiteren erfolgt die Auswertung von DENSITY, SYM1 und SYM2 wie im Auswertemodus ABSOLUTE.

$$CHL_N = 4096 - \frac{CH_L}{MAX_CHL} * 4096 \qquad CHC_N = 4096 - \frac{CH_C}{MAX_CHC} * 4096 \qquad CHR_N = 4096 - \frac{CH_R}{MAX_CHR} * 4096 = \frac{CH_R}{MAX_CHR} + 1096 - \frac{CH_R}{MAX_CHR} = 1006 - \frac{CH_R}{MAX_CHR} = 1006$$

$$DENSITY = CHC N$$

$$YM1 = \frac{CHL_N}{CHL_N + CHR_N} *1000$$

$$SYM2 = \frac{CHC_N}{CHC_N + \frac{CHL_N + CHR_N}{2}} *1000$$

S

4.3 Funktion des Datenrekorders (OPEN RECORDER)

Die SI-JET2-Scope Software beinhaltet einen Datenrekorder, der es erlaubt eine gewisse Anzahl von Datenframes abzuspeichern. Das aufgezeichnete File wird auf der Festplatte Ihres PC abgespeichert und kann anschließend mit einem Tabellenkalkulationsprogramm ausgewertet werden.

Das erzeugte File hat acht Spalten und so viele Zeilen, wie Datenframes aufgezeichnet worden sind. Eine Zeile ist wie folgt aufgebaut: Datum und Uhrzeit, CH_L, CH_C, CH_R, DENSITY, SYM1, SYM2, TEMP. Achtung! Beim Öffnen mit EXCEL müssen Datum und Uhrzeit in zwei Spalten getrennt werden.

Führen Sie folgende Schritte durch, um Datenframes mit dem Recorder aufzuzeichnen: Beachtel:

Aufzeichnung hängt von dem ausgewählten EVALUATION MODE ab. Bei verschiedenen EVALUATION MODE werden bestimmte Daten nicht benötigt und deshalb auf den Wert 0 gesetzt, d.h. es wird für diese Daten der Wert 0 aufgezeichnet.

Bei TRIGGER=EXT1 und EXT2 werden nur die bei einer Triggerung errechneten Daten übertragen.

1. Schritt:

OPEN RECORDER Nach Drücken von OPEN RECORDER öffnet sich folgendes Fenster:

* RECORDER		
SELECT DATA RECORDING	SHOW GRAPH	
RECORD-TIME INTERVAL IN	SECONDS 1	CH_L O
VALUES TO BE RECORDED	(MAX 50 000) 1000	CH_C
TOTAL RECORDING TIME (da	CH_R	
RECORDED VALUES	REMAINING	DENSITY
0	1000	SYM1 0
START AUTO RECORD	SYM2	
CLOSE RE		
SELECT RECORD FILE		

2. Schritt:

Zur Automatischen Aufzeichnung von mehreren Daten Frames wählen Sie AUTO RECORDING unter SELECT DATA RECORDING aus. Geben Sie ein Zeitintervall für die Aufzeichnung ein, im Beispiel: 5 - d.h., alle 5 Sekunden wird ein neuer Frame vom Sensor angefordert. Geben Sie nun in das untere Eingabefeld ein, wie viele Werte Sie maximal aufzeichnen wollen. Anmerkung: Die Aufzeichnung kann auch vorher gestoppt werden, ohne dass die bisher aufgezeichneten Daten verloren gehen.

In diesen Fenstern wird in Tagen, Stunden, Minuten und Sekunden angezeigt, wie lange die Aufzeichnung dauert, wenn alle Daten aufgezeichnet werden.

3. Schritt:

Selektieren Sie über SELECT RECORD FILE ein File in welches der Datenframe abgespeichert werden soll.

Sollten Sie einen bereits existierenden Filenamen auswählen, werden Sie gefragt, ob Sie das bestehende File überschreiben wollen oder nicht.

4. Schritt

Durch Drücken von START AUTO RECORD starten Sie die automatische Aufzeichnung der Daten.

Der Recorder beginnt mit der Aufzeichnung. Dabei wird der Button rot eingefärbt als Zeichen für eine aktive Aufzeichnung. Die jeweiligen Datenframes werden in den Anzeigefenstern zur Ansicht gebracht. Zusätzlich können Sie in den beiden Anzeigefenstern RECORDED VALUES und REMAINING kontrollieren, wie viele Datenframes schon aufgezeichnet wurden und wie viele noch aufzuzeichnen sind.

Durch Drücken von SHOW GRAPH öffnet sich ein Graphikfenster, welches die aufgezeichneten Werte zur Anzeige bringt.

Beachte:

Während der Aufzeichnung sind die beiden Eingabefelder RECORD-TIME INTERVAL und VALUES TO BE RECORDED inaktiv.

RECORD-TIME INTERVAL IN SECONDS	5
VALUES TO BE RECORDED (MAX 50 000)	1000

ie	TOTAL RECORDING TIME (days hour minutes seconds)			
	0 1	23	20	
ein	SELECT RECORD FILE			
nen	d:\Filename\record.dat			
ht.				
	START AUTO RECORD			

SHOW GRAPH				
СН_Ц 🚺 О				
СН_С о				
CH_R <mark>0</mark>				
DENSITY				
SYM1 0				
SYM2 0				
TEMP 0				

STOP AUTO RECORD

5. Schritt:

Nachdem alle Datenframes unter VALUES TO BE RECORDED aufgezeichnet worden sind bzw. durch Drücken von STOP AUTO RECORD erscheint ein Pop-up-Fenster, welches das Speichern des Files bestätigt.

Wenn Sie Daten "von Hand" aufzeichnen wollen, wählen Sie unter SELECT DATA RECORDING die Funktion MANUAL RECORDING aus.

schließen Sie den Recorder und kehren zum

Hauptprogramm zurück.

Über START POLLING beginnen Sie Daten vom Sensor einzulesen. Diese Daten werden in dem Anzeigefenster visualisiert. Durch Drücken von CAPTURE DATA FRAME wird ein Datenframe in das unter SELECT RECORD FILE ausgewählte File abgespeichert. In RECORDED VALUES wird die Summe der bereits aufgezeichneten Frames angezeigt.

* RECORDER	
SELECT DATA RECORDING MANUAL RECORDING	SHOW GRAPH
START AUTO POLLING STOP POLLING	CH_L 0
	CH_C
	CH_R 0
RECORDED VALUES	DENSITY
0	SYM1 0
CAPTURE DATA FRAME	SYM2
CLOSE RECORDER	ТЕМР 0
SELECT RECORD FILE Filename	

Hinweis:

Nach Drücken von START AUTO RECORD wird das File, welches unter SELECT RECORD FILE ausgewählt ist, gelöscht. Bei RECORD FRAME MANUALLY wird das File sofern es noch nicht besteht erzeugt. Sollte das File schon bestehen, werden die Daten an das bestehende File angehängt.

SHOW GRAPH

Nach Drücken von SHOW GRAPH erscheint ein Panel, welches es dem Benutzer erlaubt die verschiedenen Signale zu monitoren.

Über das DROP DOWN Menü SIGNAL kann zwischen den einzelnen Signalen hin und her geschaltet werden.

RAPH PANEL							
	CH_L	CH_C	CH_R	DENSITY	SYM1	SYM2	TEMP
SIGNAL COLOUR	0	0	0	0	0	0	0
4096-							
3750-							_
3500-							
3250-							_
3000-							
2750-							
2500-							
2250-							_
2000-							
1750-							
1500-							
1250-							
1000-							
750-							
500-							
250-							
	20 30	40	50	60	70 8	0 90	100
							_

4.4 Funktion des LED-Displays

5. Anschlussbelegung des SI-JET2 Systems

Anschluss SI-JET2 an PC:

	5-pol. Buchse (Typ Binder 712) SI-JET2/PC-RS232	
Pin-Nr.:		Belegung:
1		0V (GND)
2		TxD
3		RxD
4		Not connected
5		Not connected

Anschluss SI-JET2 an SPS:

	8-pol. Buchse SI-JI			
Pin-Nr.:	Farbe:	Bel	egung:	
1	Weiß	0V	(GND)	
2	Braun	+12VD0	C +30VDC	
3	grün		IN0	
4	Gelb	OUT0 (Digital 0: Type 0	1V, Digital 1: Type +	+Ub – 10%)
5	Grau	OUT1 (Digital 0: Type 0	1V, Digital 1: Type +	+Ub – 10%)
6	Rosa	OUT2 (Digital 0: Type 0	1V, Digital 1: Type +	+Ub – 10%)
7	Blau	OUT3 (Digital 0: Type 0	1V, Digital 1: Type +	+Ub – 10%)
8	Rot	OUT4 (Digital 0: Type 0	1V, Digital 1: Type +	+Ub – 10%)

Sensor Let's make sensors more individual

6. RS232 Schnittstellenprotokoll

RS232 communication protocol PC ⇔ SI-JET2 Sensor (SI-JET2-Scope V3.0)

- Standard RS232 serial interface without hardware-handshake

- 3-wire: GND, TX0, RX0

- Speed: 19200 baud, 8 data-bits, no parity-bit, 1 stop-bit in binary mode, us (unsigned), MSB (most significant byte) first.

The control device (PC or PLC) has to send a data frame of 18 words to the SI JET2 hardware. All bytes must be transmitted in binary format (us, MSB). The meaning of the parameters is described in the software manual. Info: 1 word = 2 bytes

Method:

The hardware is permanently reading (polling) the incoming byte at the RS232 connection. If the incoming word is 0x0055 (synch-word), then the 2. word (order-word) is read in, after this, 16 words (parameters) will be read. After reading in the completely data frame, the SI JET2 hardware executes the order which is coded at the 2. word (order-word).

Format of the data frame:				
Word No.	Format	Meaning	Comment:	
1	Word	sync-word = 0x0055	hex-code 0x0055, binary: 0000 0000 0101 0101, synchronisation word	
2	Word	ORDER NUMBER	order word	
3	Word	POWER	LED intensity (0 1000) Attention intensity in thousendth!	
4	Word	Free	Must be sent as dummy (e.g. 0)	
5	Word	AVERAGE	Signal averaging 1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384 or 32768	
6	Word	EVALUATION MODE	Evaluation mode ABSOLUTE or RELATIVE coded to (0,1)	
7	Word	HOLD[ms]	Hold time 0,1,2,3,5,10,50 or 100ms coded to (0,1,2,3,5,10,50 or 100)	
8	Word	INTLIM	Lower intensity limit (0 4095)	
9	Word	MAXVEC-No.	Number of the vectors (1,2,3,,31)	
10	Word	OUTMODE	Function of the digital output (0=direct/HI, 1=binary, 2=direct/LO)	
11	Word	TRIGGER	Trigger mode CONT, EXT1, EXT2 (0,1,2)	
12	Word	EXTERN TEACH	Extern Teach OFF or ON coded to (0,1)	
13-18	Word	Free	Must be sent as dummy (e.g. 6 value 0)	

Value	ORDER NUMBER (paramet	er byte no. 2)
0	nop	no operation
1	Save parameter from PC into RAM	Cf. Example 1
2	Save one selectable row of TEACH TABLE into RAM	Cf. Example 2
3	Send parameter from RAM to PC	Cf. Example 3
4	Send one selectable Row of TEACH TABLE from RAM to PC	Cf. Example 4
5	Send data from RAM to PC	Cf. Example 5
6	Save parameter from RAM to EEPROM	Cf. Example 6
7	Send connection OK to PC	Cf. Example 8
8	Load Parameter from EEPROM to RAM	Cf. Example 7
19	Same as order 5 if TRIGGER=0	Cf. Example 5
	If TRIGGER = 1 or 2 only triggered values are transmitted	
20	Send line ok = 0x0055, 0x0014, 0x00AA, 11 Dummies to PC	Cf. Example 9

Example 1: DATA FRAME with ORDER NUMBER = 1:

ORDER NUMBER (second word = 1): WRITE parameters from PC into RAM of the SI JET2! The completely data frame = 18 words must be sent to the SI JET2 hardware in binary form (sync-word / order-word / 16 parameter words).

DATA FRAME PC → SI JET2 (18 WORDS)

0x0055	SYNCWORD
1	ORDER-WORD
200	POWER
0	DUMMY
1024	AVERAGE
0	EVALUATION MODE
10	HOLD[ms]
10	INTLIM
5	MAXVEC-No.
0	OUTMODE
0	TRIGGER
0	EXTER TEACH
0	DUMMY

0x00AA	SYNCWORD
1	ORDER-WORD
200	POWER
0	DUMMY
1024	AVERAGE
0	EVALUATION MODE
10	HOLD[ms]
10	INTLIM
5	MAXVEC-No.
0	OUTMODE
0	TRIGGER
0	EXTER TEACH
0	DUMMY

Example 2: DATA FRAME with ORDER NUMBER = 2:

ORDER NUMBER (second word = 2): WRITE one selectable row (vector) of TEACH TABLE into RAM of the SI JET2!

The completely data frame = 18 words must be sent to the SI JET2 hardware in binary form (sync-word / order-word / ROW-NO / 4 parameter words = vector, 11 dummies).

Fill unused words of the TEACH VECTOR by value word=1 in binary form.

DATA FRAME PC → SI JET2 (18 WORDS)

0x0055	SYNC-WORD
2	ORDER-WORD
0	ROW-No. (030)
2000	D
100	DTO
500	S1
30	S1TO
400	S2
25	S2TO
1	DUMMY

0x00AA	SYNC-WORD
2	ORDER-WORD
0	ROW-No. (030)
2000	D
100	DTO
500	S1
30	S1TO
400	S2
25	S2TO
1	DUMMY

Example 3: DATA FRAME with ORDER NUMBER = 3:

ORDER NUMBER (second word = 3): READ parameters out of SI JET2-RAM memory!

The same frame as example 1 must be sent to the SI JET2 hardware except of the order word that must be **3**. The values for the parameters must be sent as Dummies.

The complete DATA FRAME which is responded by the SI JET2 hardware is 18 words.

DATA FRAME PC \rightarrow SI JET2 (18 WORDS) DATA FRAME SI JET2 \rightarrow PC (18 WORDS)

0x00AA	SYNC-WORD
3	ORDER-WORD
200	POWER
0	DUMMY
1024	AVERAGE
0	EVALUATION MODE
10	HOLD[ms]
10	INTLIM
5	MAXVEC-No.
0	OUTMODE
0	TRIGGER
0	EXTER TEACH
0	DUMMY

Example 4: DATA FRAME with ORDER NUMBER = 4:

ORDER NUMBER (second word = 4): READ one selectable row (vector) from RAM of the SI JET2! The same frame as example 2 must be sent to the SI JET2 hardware except of the order word that must be **4**. The values for the parameters must be sent as Dummies.

The complete DATA FRAME which is responded by the SI JET2 hardware is 18 words.

DATA FRAME PC \rightarrow SI JET2 (18 WORDS) DATA FRAME SI JET2 \rightarrow PC (18 WORDS)

0x00AA	SYNC-WORD
4	ORDER-WORD
0	ROW-No. (030)
2000	D
100	DTO
500	S1
30	S1TO
400	S2
25	S2TO
1	DUMMY

Example 5: DATA FRAME with ORDER NUMBER = 5:

ORDER NUMBER (second word = 5): READ SI JET2 RAW DATA Parameters must be sent for a constant parameter frame as dummies. At order word **5** they do not affect the RAM or EEPROM. ORDER NUMBER = 19 is similar. but if TRIGGER = 1 or 2 only triggered values are transmitted.

DATA FRAME PC → SI JET2 (18 WORDS)

0x0055	SYNC-WORD
5	ORDER-WORD
0	DUMMY

0x00AA		
5		
CH_L		
CH_C		
CH_R		
DENSITY		
SYM1		
SYM2		
V-No:		
TEMP		
MAX_CHL		
MAX_CHC		
MAX_CHR		
DUMMY		

Example 6: DATA FRAME with ORDER NUMBER = 6:

ORDER NUMBER (second word = 6): SAVE parameters from RAM to EEPROM of the SI JET2! The complete data frame = 18 words must be sent to the SI JET2 hardware in binary form (sync-word / orderword / 16 parameter words).

DATA FRAME PC → SI JET2 (18 WORDS)

0x0055	SYNC-WORD
6	ORDER-WORD
0	DUMMY

After sending this data frame, the sensor saves all the parameters and teach vectors from its RAM (volatile memory) to its EEPROM (non volatile memory).

ATTENTION: The right parameters and teach vectors must be in the RAM of the sensor. To save the parameters and teach vectors into RAM see Example1 and Example2.

After completing the sensor writes back an echo of the same frame.

0x00AA	SYNC-WORD
6	ORDER-WORD
0	DUMMY

Example 7: DATA FRAME with ORDER NUMBER = 8:

ORDER NUMBER (second word = 8): Load parameters from EEPROM to RAM of the SI JET2! The complete data frame = 18 words must be sent to the SI JET2 hardware in binary form (sync-word / orderword / 16 parameter words).

DATA FRAME PC → SI JET2 (18 WORDS)

0x0055	SYNC-WORD
8	ORDER-WORD
0	DUMMY
Ō	DUMMY

After sending this data frame, the sensor loads all the parameters and teach vectors from its EEPROM (non volatile memory) to its RAM (volatile memory).

ATTENTION: The EEPROM parameters must be load first to the RAM to read it from the sensor. To get the parameters and teach vectors from RAM see **Example3** and **Example4**.

After completing the sensor writes back an echo of the same frame.

0x00AA	SYNC-WORD
8	ORDER-WORD
0	DUMMY

Example 8: DATA FRAME with ORDER NUMBER = 7:

ORDER NUMBER (second word = 7): SEND CONNECTION OK from the SI JET2 to PC! Cf. example 1:

Send the same DATA FRAME but with ORDER NUMBER 7 to the sensor.

The sensor will reply with 18 words which tell the version of the sensor.

Example 9: DATA FRAME with ORDER NUMBER = 20:

ORDER NUMBER (second word = 20): SEND LINE OK from the SI JET2 to PC! Cf. example 1:

Send the same DATA FRAME but with ORDER NUMBER 20 to the sensor.

The sensor will reply with the same18 words but with SYNC-WORD=0x00AA which tell that there is a connection.